If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+8x=600
We move all terms to the left:
x^2+8x-(600)=0
a = 1; b = 8; c = -600;
Δ = b2-4ac
Δ = 82-4·1·(-600)
Δ = 2464
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2464}=\sqrt{16*154}=\sqrt{16}*\sqrt{154}=4\sqrt{154}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-4\sqrt{154}}{2*1}=\frac{-8-4\sqrt{154}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+4\sqrt{154}}{2*1}=\frac{-8+4\sqrt{154}}{2} $
| 3x-91=11 | | 5h+21(11-h)=-5 | | x+1/8=1-x+6/3 | | 2(v−6)=4 | | x-$417.23=$111.43 | | -4(x+1)-4=-16 | | h+2/3=2 | | 18h+3h(-4h+2)=9 | | 5(x-3)+7(2x-7)-3x+3=11-8(x-7)+4x-(6-5x)+8-2x | | f+1=7 | | 3(x-4)-18=-12 | | q+22=2 | | 6x=54=-3x | | m/12=48 | | 4(7x+2)=76 | | 2v^2+19v–10=0 | | 7(d-98)=-14 | | 9x-2+6x-4=-21 | | -4x+2(3+x)=14 | | w3=3 | | 5x-4=-6x+(-4) | | 1/2(7x-6)+3x=49 | | 14=-7(t-97) | | 24+24x=600 | | 46=2y+8 | | 21=7(d-8) | | b-5+8b=2 | | -2(u-10)=-20 | | 5n+24=20 | | 2(b-11)=10 | | x+8/12=1/6+x-4/3 | | u−5=2 |